La aplicación de Gauss de una superficie mínima completa y lagrangiana no puede omitir más de 4 puntos

Oscar Mario Peralta *
Universidad del Valle, Cali

1. Introducción

El número de puntos que omiten las imágenes de la aplicación de Gauss de una superficie mínima y completa en R^3 ha sido tema de estudio en las últimas décadas. En 1969 Fujimoto dio el punto final a este problema. Su teorema establece:

Teorema 1 (Fujimoto). Sea S una superficie mínima y completa en R^3 distante de un plano. Entonces la imagen de S bajo la aplicación de Gauss puede omitir a lo más 4 puntos en la frontera.

Se han logrado construir ejemplos en los cuales se demuestra que el número 4 en el teorema precedente es el mejor posible, (ver [1] teorema 8.3, p.72). Si *Trabajo de tesis de Maestría en la Universidad del Valle. Director: Carlos J. Rodríguez
S C R^n es una superficie orientable, su aplicación de Gauss es una función G de S a G(2,4), el conjunto de los planos orientados en R^4 que pasan por el origen, que asigna a cada p ∈ S el plano T_pS trazado al origen con la orientación que le da S. Damos que S C R^n es lagrangiana si lo es con respecto a la variedad simplética (R^n, dx_1 ∧ dx_2 ∧ dx_3 ∧ dx_4). Es decir, si la 1-forma dx_i ∧ dx_j ∧ dx_k ∧ dx_l se anula en T_pS para todo p ∈ S. Se tiene que G(2,4) se puede identificar con S^3 x S^3 y que si S C R^n es una superficie mínima y lagrangiana, entonces la imagen de G está contenida en S^3 x (S^3 ∩ S^5). Así la aplicación de Gauss se puede tomar como una función de S a S^3. Damos aquí una representación para las superficies mínimas y lagrangianas en R^4 analoga a la representación de Weierstrass para las superficies mínimas en R^3 (ver [2] lemas 8.1 y 8.2, p.63) y demostramos que en el teorema de Fujimori se puede cambiar la hipótesis "superficies mínimas y completas en R^4" por "superficies mínimas, completas y lagrangianas en R^4". Además caracterizamos las superficies mínimas y lagrangianas en R^4 que son gráficas de funciones f : R^3 → R^3.

2. Resultados

Antes de demostrar los resultados, se identificará de una manera sencilla el conjunto G(2,4) con S^3 x S^3. En adelante, identificaremos R^4 con los cuaterniones de Hamilton Q = {x1 + i x2 + j x3 + k x4 : x1, x2, x3, x4 ∈ R}. Así, por ejemplo, el producto de 2 vectores representará el producto cuaterniónico de los 2 cuaterniones asociados a estos vectores, y si x = (x_0, x_1, x_2, x_3) entonces x puede representar el vector x = (x_0, -x_1, -x_2, -x_3), o el cuaternión x_0 - i x_1 - j x_2 - k x_3. La identificación de G(2,4) con S^3 x S^3 está determinada por la aplicación biyectiva Ψ : G(2,4) → S^3 x S^3 definida por Ψ(A) = (a, η) donde (a, η) es una base orientada ortogonal de A.

Teorema 1. Toda superficie mínima, completa y lagrangiana en R^4 distinta de un plano se puede representar en la forma

\[z_k(t) = Re \left(\int f \left(1 + \phi_k(u) du \right) + z_1 \right), \quad k = 1, 2, 3, 4 \]

(1)

donde

\[\phi_1 = \frac{L + i t}{2}, \quad \phi_2 = \frac{\left(f - \phi_1 \right)}{2}, \]
\[\phi_3 = \frac{1}{2}(h + t), \quad \phi_4 = \frac{1}{2}(h - t), \]

(2)

con f y h funciones analíticas en D, siendo D el disco unitario en R^3 = C y c es una constante compleja de norma 1.

Reciprocamente, dadas f y h funciones analíticas en R^3 o en el disco unitario, y c una constante compleja de norma 1, la superficie representada por (1) es mínima y lagrangiana.
Además, la métrica de S viene dada por

$$ g_{ij} = \frac{1}{2}[\mathbf{u}'\mathbf{u}' + |\mathbf{n}'\mathbf{n}'|]_{ij} $$

y si \mathbf{G} es la aplicación de Gauss de S, entonces

$$ \mathbf{G} = \begin{pmatrix} Re(u) & Im(u) & \frac{1}{2} - |u|^2 \\ \frac{1}{2} + |u|^2 & \frac{1}{2} - |u|^2 & Im(u) \\ 0 & 0 & 1 \end{pmatrix}, (0, -\lambda, \frac{1}{2}) $$

con $u = \frac{f}{\lambda} - \frac{h}{\frac{1}{2}} + ic$ y $c = a + ib$

Demostración. Ya que S es mínima, existe $x: D \rightarrow \mathbb{R}^4$ tal que $x(D) = S$ y x tiene parámetros internales, u, v, con D el disco unitario \mathbb{R}^2. Para demostrar que S se puede representar en la forma (1) basta encontrar f, λ, y tales que las funciones definidas en (2) satisfagan

$$ \phi_0 = \frac{\phi_1}{\lambda} - \frac{\phi_2}{\lambda}, \quad \phi_0 = \frac{\phi_1}{\lambda} - \frac{\phi_2}{\lambda} $$

Las funciones definidas en (3) satisfacen

$$ \phi_0^2 + \phi_1^2 + \phi_2^2 = 0 $$

porque S es mínima, y

$$ \text{Im}(\phi_1 x_0 + \phi_2 y) = 0 $$

porque S es isométrica. Luego el sistema (5) es equivalente a la ecuación

$$ dx_0 \wedge dx + [\phi_0 \wedge dx_0 + dx_0 \wedge dx_0]\left(\phi_1, \phi_2\right) = 0. $$

Escribimos la ecuación (4) en la forma

$$ \phi_0 = \phi_1 - i\phi_2, \quad \phi_0 = \phi_1 - i\phi_2, \quad \phi_0 = \phi_1 - i\phi_2 $$

Ya que S es distinta de un plano podemos suponer que $\phi_0 = \phi_1 - i\phi_2$ no es identicamente cero. Tomando $f = \phi_1 - i\phi_2, \quad \gamma = \phi_1 + i\phi_2$ y $\lambda = \phi_2 - i\phi_2$ se tiene que $\frac{\phi_0}{\lambda} = -(\phi_1 + i\phi_2)$ y que

$$ \phi_0 = \frac{\phi_1 + i\phi_2}{\lambda}, \quad \phi_0 = \frac{\phi_1 + i\phi_2}{\lambda}, \quad \phi_0 = \frac{\phi_1 + i\phi_2}{\lambda}. $$

Al reemplazar ϕ_0, ϕ_1, ϕ_2 por f, ϕ_1, ϕ_2 obtenemos

$$ \text{Im}(\phi_1 x_0 + \phi_2 y) = |f|^2 + |\phi_1|^2 - |\phi_2|^2 = 0. $$
Luego

$$|f|^2 + |g|^2 = |y|^2 + \left|\frac{f - x}{A}\right|^2 = \frac{|h|^2}{|k|^2}(|h|^2 + |f|^2).$$

Por lo tanto

$$|y| = |h|,$$

y así, $g(z) = f(z) e^{i\Phi}$ es analítica, de donde concluimos que $\frac{f}{y} = g = a + b e^{i\Phi}$ constante. Al remplazar $y = cb$ en (6) obtenemos que las funciones d_k sean como en (7).

Recíprocamente, dadas funciones analíticas f, h, g, al definir d_k, como en (7), se tiene que las funciones d_k satisfacen (3), (4) y (5), por lo tanto S es mínima y lagrangiana.

Para calcular la mínima g_0, se tiene que

$$g_0 = \frac{\partial f}{\partial y} = \frac{\partial h}{\partial x} y a = \frac{\partial}{\partial x} \left(\frac{x}{y}\right)^2 + \left|\frac{x}{y}\right|^2 + \left|\frac{x}{y}\right|^2 + \left|\frac{x}{y}\right|^2$$

$$= \frac{1}{2} \left(\frac{x}{y}\right)^2 + |x|^2 + |y|^2$$

Calculemos ahora la aplicación de Gauss. Una base orthonormal orientada de \mathbb{R}^2 es (u, v) con

$$\sqrt{\mathcal{V}|u|} = (\text{Re}u, \text{Re}v, \text{Re}v, \text{Re}u)$$

$$\sqrt{\mathcal{V}|u|} = (-\text{Im}u, -\text{Im}v, -\text{Im}v, -\text{Im}u)$$

Luego

$$p_1(u) = \mathcal{V}(\text{Re}(\bar{\bar{u}}_1 \bar{\bar{v}} + \bar{\bar{v}}_1 \bar{\bar{u}})) = \mathcal{V}(\text{Re}(\bar{\bar{u}}_1 \bar{\bar{v}} + \bar{\bar{v}}_1 \bar{\bar{u}})) +$$

$$\mathcal{V}(\text{Im}(\bar{\bar{u}}_1 \bar{\bar{v}} + \bar{\bar{v}}_1 \bar{\bar{u}}))$$

$$= \mathcal{V}(\text{Re}(\bar{\bar{u}}_1 \bar{\bar{v}} + \bar{\bar{v}}_1 \bar{\bar{u}})) + \mathcal{V}(\text{Im}(\bar{\bar{u}}_1 \bar{\bar{v}} + \bar{\bar{v}}_1 \bar{\bar{u}}))$$

$$= \frac{1}{2} \left(\frac{x}{y}\right)^2 + |x|^2 + |y|^2 + (x - y)$$

Pero

$$\bar{u}_1 \bar{v}_1 + \bar{v}_1 \bar{u}_1 = \frac{1}{2} \left(\frac{x}{y}\right)^2 - \frac{1}{2} |x|^2 + f(h - f(x) + c y - c y)$$

$$\bar{u}_1 \bar{v}_1 + \bar{v}_1 \bar{u}_1 = \frac{1}{2} \left(\frac{x}{y}\right)^2 + (f(x) - c y + b(x - c y))$$

$$\bar{u}_1 \bar{v}_1 + \bar{v}_1 \bar{u}_1 = \frac{1}{2} \left(\frac{x}{y}\right)^2 - \frac{1}{2} |x|^2 + f(x) + (f(x) - c y)$$

$$\bar{u}_1 \bar{v}_1 + \bar{v}_1 \bar{u}_1 = \frac{1}{2} \left(\frac{x}{y}\right)^2 + (f(x) - c y + b(x - c y))$$
Por lo tanto
\[\Phi + \frac{1}{\Phi} = \left(\frac{\|\Phi\|^2 - |\Phi|^2}{\|\Phi\|^2 + |\Phi|^2} \right) \frac{2 \text{Im}(\Phi)}{\|\Phi\|^2 + |\Phi|^2} - \frac{\text{Re}(\Phi)}{\|\Phi\|^2 + |\Phi|^2}; (0, -h, \alpha) \]
y tomando \(u = \frac{f + k}{\alpha} \), obtenemos
\[\Phi + \Phi^* = \left(\frac{2 \text{Re}(\Phi)}{\|\Phi\|^2 + |\Phi|^2} \right) \left(\frac{1 - |\Phi|^2}{\|\Phi\|^2 + |\Phi|^2} \right) - (0, -h, \alpha) \]

Esto completa la demostración.

Teorema 2. Sea \(\tilde{S} \) una superficie mínima completa, conexa y inmersa en \(\mathbb{R}^3 \) dotada de un plano. La imagen de \(\tilde{S} \) bajo la aplicación de Gaus puede omitir a lo más 4 puntos en la esfera unitaria.

Demostración. Sean \(f \) y \(\tilde{f} \) las funciones analíticas dadas por el teorema 2, \(\tilde{w} : D \rightarrow \mathbb{C} \cup \{\infty\}, \tilde{w} = \frac{k + f + k}{\alpha} \). Si \(z_0 \) omite un punto distinto de \(\infty \), digamos \(z_0 \), entonces la función analítica
\[\alpha = (k + 1) + (1 - n_0) \]

satisface
\[0 < |\alpha| \leq |\tilde{w}| + |\tilde{f}| \]
porque si \(n_0 = 0 \), entonces \(z_0 f + f = -n_0 k + k = 0 \), de donde \(z_0 (\tilde{w} - f) = k + f \)
y obteníamos \(z_0 = k + f \)

Sea \(\tilde{S} \subset \mathbb{R}^3 \) una superficie mínima cuya función \(\phi \) y \(g \) del teorema de representación de Weierstrass están dadas por
\[g = \frac{h + f}{k - f} \]
\[\phi = \frac{f + h}{k + f} \]

Por el teorema 2 de la introducción y el teorema 2 de esta sección, \(\tilde{S} \) y \(\tilde{S} \) unen la misma cantidad de puntos en \(\mathbb{R}^3 \).

Probemos ahora que la superficie \(\tilde{S} \) no es completa. La métrica de \(\tilde{S} \) viene dada por
\[\tilde{d}^2 = \frac{1}{4} \left(|\Phi|^2 - |f|^2 \right)^2 \left(1 + \frac{|f|^2}{|\Phi|^2} \right)^2 \tilde{d}^2 \]
\[= \frac{1}{4} \left(|\tilde{w}|^2 + |\tilde{f}|^2 \right)^2 \tilde{d}^2 \]
\[\geq \frac{|\tilde{w}|^2 + |\tilde{f}|^2}{|\tilde{w}||\tilde{f}|} \tilde{d}^2 = \rho \]

Para el caso particular de
\[f = \frac{1}{2} |\tilde{w}| \]
donde g_0 es la métrica de \tilde{S}. Por lo tanto, como \tilde{S} es completa, \tilde{S} también lo es.

Ya que \tilde{S} es completa, por el teorema de Fujimori, su aplicación de Gauss no puede omitir más de cuatro puntos. Esto completa la prueba, porque el número de puntos que omite la aplicación de Gauss de \tilde{S} y el número de puntos que omite la aplicación \tilde{S} son el mismo.

En el siguiente teorema supondremos que ω es una variedad sincticapta en \mathbb{R}^4, $\lambda_1 \lambda_2 + \lambda_1 \lambda_2 = 0$.

Teorema 3. Sea $S = \{(x, y, f(x, y), f(x, y)) : (x, y) \in \mathbb{R}^2\}$ una superficie en \mathbb{R}^4 dada por un plano. S es mínima y lagrangiana si y solo si

$$f_x(x, y) + f_y(x, y) = 0$$

asimétrica.

Demostración. Supongamos que S es mínima y lagrangiana. Ya que S es mínima, por el teorema de Osserman ([1], p. 37) existe una transformación local

$$x_1 = x_1$$

$$x_2 = x_2 + \lambda_2$$

tal que x_1, x_2 son parámetros integrales.

Ya que S es mínima, las funciones

$$\phi_1(x_1 + \lambda_2) = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} = 1,$$

$$\phi_2(x_1 + \lambda_2) = \frac{\partial f}{\partial y_1} + \frac{\partial f}{\partial y_2} = \lambda_1 \lambda_2,$$

$$\phi_3(x_1 + \lambda_2) = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial y_1} = \partial_x + \partial_y,$$

$$\phi_4(x_1 + \lambda_2) = \frac{\partial f}{\partial x_2} + \frac{\partial f}{\partial y_2} = \partial_x + \partial_y,$$

son funciones analíticas y, como S es lagrangiana,

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \quad \text{satisface la ecuación}$$

(7)

Además,

$$\phi_1 + \phi_2 + \phi_3 + \phi_4 = 0,$$

que es equivalente a

$$\phi_1^2 + \phi_2^2 = 1 - (\alpha - h)\lambda_2 = \bar{n}^2 - 1 + \bar{n}.$$

(8)
En el caso en que \(a = 0 \) y \(b = 1 \), utilizando (7) y el hecho de que los parámetros \(x \) y \(y \) son intermedios concluimos que \(\frac{\partial f}{\partial y} = \frac{\partial f}{\partial x} \) y
\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = -2b \] es decir \(f_b + i f_y \) es antianaclítica, y \(\frac{\partial f}{\partial y} = \frac{\partial f}{\partial x} = 0 \), y como \(f_b \) y \(f_y \) son análicas, se tiene que \(\frac{\partial f}{\partial y} = \frac{\partial f}{\partial x} \) son constantes.
Luego \(\delta \) es un plano.

Si el caso anterior no se da, ya que
\[\frac{1}{2} \bar{f}_b + (-1 + \frac{1}{2} \bar{b}) f_y \] es análica, entonces
\[\frac{\partial f}{\partial x} + 2a \frac{\partial f}{\partial y} + (a^2 + b) \frac{\partial f}{\partial y} = \varepsilon, \quad \boldsymbol{\varepsilon \text{ constante}.} \]
porque la parte real de (8) es cero y la expresión (10) es a veces la parte imaginaria de (9).

Utilizando (7) en (8) obtenemos que
\[\psi - \psi^2 - 1 = \left(\frac{\partial f}{\partial x} \right)^2 + (a^2 - \psi^2 + 1) \left(\frac{\partial f}{\partial y} \right)^2 + (a^2 - \psi^2) \left(\frac{\partial f}{\partial y} \right)^2 \]
\[+ 2a \left(\frac{\partial f}{\partial x} \right)^2 + 2a \left(\frac{\partial f}{\partial y} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 + s \left(\frac{\partial f}{\partial y} \right)^2 \]
(11)
\[-a = \frac{\partial f}{\partial x} + s = \frac{\partial f}{\partial y} \]
(12)
Pongamos \(s = \frac{\partial f}{\partial y} \). Despejando \(\frac{\partial f}{\partial y} \) de la ecuación (10) y reemplazando en las ecuaciones (11) y (13), obtenemos que \(r \) y \(s \) satisface las siguientes dos ecuaciones
\[Ar^2 + Br + Cr^2 + Dr + E + F = 0 \] (cónica 1),
\[A'r^2 + B'r + C'r^2 + Dr + E' + F' = 0 \] (cónica 2).
Como las cónicas 1 y 2 son diferentes, se concluye que
\[r = \frac{\partial f}{\partial x} \quad s = \frac{\partial f}{\partial y} \]
son constantes y por lo tanto \(\delta \) es un plano.
Bibliografía

1. H. Fuku moto, On the number of exceptional values of the Gauss map of minimal sur-

3. G. Rodríguez-Valiente, La aplicación de Hopf y la sustitución de la carga electrónica, Lecturas Matemáticas VI (Agro-Ciencia 1984), 27.

4. F. Xavier, The Gauss map of a complete non-axial minimal surface cannot omit 7 points

Oscar Mario Pinedo
Departamento de Matemáticas
Universidad del Valle
Cali, Colombia