Let E be a measurable set. For $p \in (0, \infty)$ let $L^p = L^p(E)$ be the space of measurable functions f such that $\int_E |f|^p < \infty$.

L^∞ is the space of measurable functions on E that are essentially bounded.

Two functions are considered the same as elements of L^p if they differ only on a set of measure zero.

If $1 \leq p < \infty$, then L^p is a normed linear space with the norm $\|f\|_p = \left(\int |f|^p\right)^{1/p}$ for $1 \leq p < \infty$ and $\|f\|_\infty = \text{ess sup} |f(x)|$.

L^p is complete for all $p \in [1, \infty]$. This means that every Cauchy sequence in L^p converges to a function in L^p.

This makes L^p to be a Banach Space.

Banach Space = Complete Normed Linear Space.
Let E be a measurable set. For $p \in (0, \infty)$ let $L^p = L^p(E) =$ the space of measurable functions f such that $\int_E |f|^p < \infty$. This makes L^p to be a Banach Space.

Banach Space = Complete Normed Linear Space.
Let E be a measurable set. For $p \in (0, \infty)$ let $L^p = L^p(E)$ be the space of measurable functions f such that $\int_E |f|^p < \infty$.

L^∞ is the space of measurable functions on E that are essentially bounded.

L^p is complete for all $p \in [1, \infty]$. This means that every Cauchy sequence in L^p converges to a function in L^p. This makes L^p a Banach Space.

Banach Space $= \text{Complete Normed Linear Space}$.
Let E be a measurable set. For $p \in (0, \infty)$ let $L^p = L^p(E)$ be the space of measurable functions f such that $\int_E |f|^p < \infty$.

L^∞ is the space of measurable functions on E that are essentially bounded.

Two functions are considered the same as elements of L^p if they differ only on a set of measure zero.
Let E be a measurable set. For $p \in (0, \infty)$ let $L^p = L^p(E)$ the space of measurable functions f such that $\int_E |f|^p < \infty$.

L^∞ is the space of measurable functions on E that are essentially bounded.

Two functions are considered the same as elements of L^p if they differ only on a set of measure zero.

If $1 \leq p < \infty$, then L^p is a normed linear space with the norm $\|f\|_p = \left(\int |f|^p \right)^{1/p}$ for $1 \leq p < \infty$ and $\|f\|_\infty = \text{ess sup} |f(x)|$.

L^p is complete for all $p \in [1, \infty]$. This means that every Cauchy sequence in L^p converges to a function in L^p. This makes L^p to be a Banach Space. Banach Space = Complete Normed Linear Space.
Let E be a measurable set. For $p \in (0, \infty)$ let $L^p = L^p(E) = \text{the space of measurable functions } f \text{ such that } \int_E |f|^p < \infty.$

L^∞ is the space of measurable functions on E that are essentially bounded.

Two functions are considered the same as elements of L^p if they differ only on a set of measure zero.

If $1 \leq p < \infty$, then L^p is a normed linear space with the norm

$$||f||_p = \left(\int |f|^p \right)^{1/p} \text{ for } 1 \leq p < \infty$$

and

$$||f||_\infty = \text{ess sup } |f(x)|.$$

L^p is complete for all $p \in [1, \infty]$. This means that every Cauchy sequence in L^p converges to a function in L^p.

This makes L^p to be a Banach Space. Banach Space = Complete Normed Linear Space.
Let E be a measurable set. For $p \in (0, \infty)$ let $L^p = L^p(E)$ be the space of measurable functions f such that $\int_E |f|^p < \infty$.

L^∞ is the space of measurable functions on E that are essentially bounded.

Two functions are considered the same as elements of L^p if they differ only on a set of measure zero.

If $1 \leq p < \infty$, then L^p is a normed linear space with the norm $\|f\|_p = (\int |f|^p)^{1/p}$ for $1 \leq p < \infty$ and $\|f\|_\infty = \text{ess sup} |f(x)|$.

L^p is complete for all $p \in [1, \infty]$. This means that every Cauchy sequence in L^p converges to a function in L^p.

This makes L^p to be a Banach Space.
Let E be a measurable set. For $p \in (0, \infty)$ let $L^p = L^p(E) =$ the space of measurable functions f such that $\int_E |f|^p < \infty$.

L^∞ is the space of measurable functions on E that are essentially bounded.

Two functions are considered the same as elements of L^p if they differ only on a set of measure zero.

If $1 \leq p < \infty$, then L^p is a normed linear space with the norm $\|f\|_p = \left(\int |f|^p \right)^{1/p}$ for $1 \leq p < \infty$ and $\|f\|_\infty = \text{ess sup} |f(x)|$.

L^p is complete for all $p \in [1, \infty]$. This means that every Cauchy sequence in L^p converges to a function in L^p.

This makes L^p to be a Banach Space.

Banach Space $=$ Complete Normed Linear Space.
A sequence \(\{f_n\} \) of functions in \(L^p \) that converges in \(L^p \) to a function \(f \in L^p \) need not converge pointwise a.e. to \(f \).

If the sequence \(\{f_n\} \) converges to \(f \) in \(L^p \) then there is a subsequence \(\{f_{n_k}\} \) that converges to \(f \) pointwise almost everywhere.

A sequence \(\{f_n\} \) of functions in \(L^p \) that converges pointwise a.e. to a function \(f \in L^p \) need not converge to \(f \) in \(L^p \).

Theorem
Let \(\{f_n\} \) be a sequence of functions in \(L^p(E) \) that converges pointwise a.e. to a function \(f \in L^p \).

Then \(\{f_n\} \) converges to \(f \) (in norm) in \(L^p \) if and only if
\[
\lim_{n \to \infty} ||f_n||_p = ||f||_p.
\]
A sequence \(\{ f_n \} \) of functions in \(L^p \) that converges in \(L^p \) to a function \(f \in L^p \) need not converge pointwise a.e. to \(f \).
A sequence \(\{f_n\} \) of functions in \(L^p \) that converges in \(L^p \) to a function \(f \in L^p \) need not converge pointwise a.e. to \(f \).

If the sequence \(\{f_n\} \) converges to \(f \) in \(L^p \) then there is a subsequence \(\{f_{n_k}\} \) that converges to \(f \) pointwise almost everywhere.
A sequence \(\{f_n\} \) of functions in \(L^p \) that converges in \(L^p \) to a function \(f \in L^p \) need not converge pointwise a.e. to \(f \).

If the sequence \(\{f_n\} \) converges to \(f \) in \(L^p \) then there is a subsequence \(\{f_{n_k}\} \) that converges to \(f \) pointwise almost everywhere.

A sequence \(\{f_n\} \) of functions in \(L^p \) that converges pointwise a.e. to a function \(f \in L^p \) need not converge to \(f \) in \(L^p \).
A sequence \(\{f_n\} \) of functions in \(L^p \) that converges in \(L^p \) to a function \(f \in L^p \) need not converge pointwise a.e. to \(f \).

If the sequence \(\{f_n\} \) converges to \(f \) in \(L^p \) then there is a subsequence \(\{f_{n_k}\} \) that converges to \(f \) pointwise almost everywhere.

A sequence \(\{f_n\} \) of functions in \(L^p \) that converges pointwise a.e. to a function \(f \in L^p \) need not converge to \(f \) in \(L^p \).

Theorem

Let \(\{f_n\} \) be a sequence of functions in \(L^p(E) \) that converges pointwise a.e. to a function \(f \in L^p \). Then \(\{f_n\} \) converges to \(f \) (in norm) in \(L^p \) if and only if \(\lim_{n \to \infty} \|f_n\|_p = \|f\|_p \).
Proof.
For case $1 \leq p < \infty$.

$\left| f_n - f \right|^p \leq \left| f_n \right|^p + \left| f \right|^p$

Let $h_n = \left| f_n \right|^p + \left| f \right|^p - \left| f_n - f \right|^p$

Then $h_n \geq 0$, $h_n \to \left| f \right|^p$ pointwise a.e. and $\int h_n \leq M$ ($M = 4(\left| f \right|^p + 1)$ does the job (Fatou)

$\left| f \right|^p \leq \liminf \int h_n \leq \left| f \right|^p - \limsup \int \left| f_n - f \right|^p$

Therefore, $f_n \to f$ in L^p.

Nelson Castañeda Central Connecticut State University
Proof.
For case $1 \leq p < \infty$.

- Let $f_n \rightarrow f$ pointwise a.e. and $\|f_n\|_p \rightarrow \|f\|_p$.
Real Analysis II

Pointwise Convergence + Convergence of norms = Convergence in Norm

Proof.
For case $1 \leq p < \infty$.

- Let $f_n \to f$ pointwise a.e. and $\|f_n\|_p \to \|f\|_p$.
- $|t|^p$ is convex
Proof.

For case $1 \leq p < \infty$.

- Let $f_n \rightarrow f$ pointwise a.e. and $\|f_n\|_p \rightarrow \|f\|_p$.
- $|t|^p$ is convex
- $\left| \frac{f_n - f}{2} \right|^p \leq \frac{|f_n|^p + |f|^p}{2}$
Proof.
For case $1 \leq p < \infty$.

- Let $f_n \to f$ pointwise a.e. and $\|f_n\|_p \to \|f\|_p$.
- $|t|^p$ is convex
- $\left| \frac{f_n - f}{2} \right|^p \leq \frac{|f_n|^p + |f|^p}{2}$
- Let $h_n = \frac{|f_n|^p + |f|^p}{2} - \left| \frac{f_n - f}{2} \right|^p$
Proof.
For case $1 \leq p < \infty$.

- Let $f_n \to f$ pointwise a.e. and $\|f_n\|_p \to \|f\|_p$.
- $|t|^p$ is convex
- $\left| \frac{f_n - f}{2} \right|^p \leq \frac{|f_n|^p + |f|^p}{2}$
- Let $h_n = \frac{|f_n|^p + |f|^p}{2} - \left| \frac{f_n - f}{2} \right|^p$
- Then $h_n \geq 0$, $h_n \to |f|^p$ pointwise a.e. and $\int h_n \leq M$ ($M = 4(\|f\|_p^p + 1)$) does the job.
Proof.
For case $1 \leq p < \infty$.

1. Let $f_n \rightarrow f$ pointwise a.e. and $\|f_n\|_p \rightarrow \|f\|_p$.
2. $|t|^p$ is convex.
3. $\left| \frac{f_n-f}{2} \right|^p \leq \frac{|f_n|^p + |f|^p}{2}$
4. Let $h_n = \frac{|f_n|^p + |f|^p}{2} - \left| \frac{f_n-f}{2} \right|^p$
5. Then $h_n \geq 0$, $h_n \rightarrow |f|^p$ pointwise a.e. and $\int h_n \leq M$ ($M = 4(\|f\|_p^p + 1)$) does the job.
6. (Fatou) $\|f\|_p^p \leq \lim \inf \int h_n \leq \|f\|_p^p - \lim \sup \int \left| \frac{f_n-f}{2} \right|^p$
Proof.
For case $1 \leq p < \infty$.

- Let $f_n \rightarrow f$ pointwise a.e. and $\|f_n\|_p \rightarrow \|f\|_p$.
- $|t|^p$ is convex
- $\left| \frac{f_n - f}{2} \right|^p \leq \frac{|f_n|^p + |f|^p}{2}$
- Let $h_n = \frac{|f_n|^p + |f|^p}{2} - \left| \frac{f_n - f}{2} \right|^p$
- Then $h_n \geq 0$, $h_n \rightarrow |f|^p$ pointwise a.e. and $\int h_n \leq M$ ($M = 4(\|f\|_p^P + 1)$) does the job
- (Fatou) $\|f\|_p^P \leq \lim\inf \int h_n \leq \|f\|_p^P - \lim\sup \int \left| \frac{f_n - f}{2} \right|^p$
- Therefore, $f_n \rightarrow f$ in L^p.

\Box
The functions in L^p need not be continuous. But how bad can they be?

Functions in L^p can be approximated by continuous functions if $1 \leq p < \infty$.

Theorem

Let $1 \leq p < \infty$, E – a measurable set, f any function in $L^p(E)$, and ε any positive number. Then there exists a continuous function ϕ defined on E such that $||f - \phi||_p < \varepsilon$.

Functions with jump discontinuities cannot be approximated in L_∞ by continuous functions.
The functions in L^p need not be continuous. But how bad can they be?

Theorem

Let $1 \leq p < \infty$, E – a measurable set, f any function in $L^p(E)$ and ε any positive number. Then there exists a continuous function ϕ defined on E such that $\|f - \phi\|_p < \varepsilon$.

Functions with jump discontinuities cannot be approximated in L^∞ by continuous functions.
The functions in L^p need not be continuous. But how bad can they be?

Functions in L^p can be approximated by continuous functions if $1 \leq p < \infty$.

Theorem

Let $1 \leq p < \infty$, E – a measurable set, f any function in $L^p(E)$ and ε any positive number. Then there exists a continuous function ϕ defined on E such that $\|f - \phi\|^p < \varepsilon$.

Functions with jump discontinuities cannot be approximated in L^∞ by continuous functions.
The functions in L^p need not be continuous. But how bad can they be?

Functions in L^p can be approximated by continuous functions if $1 \leq p < \infty$.

Theorem

Let $1 \leq p < \infty$, E – a measurable set, f any function in $L^p(E)$ and ε any positive number. Then there exists a continuous function φ defined on E such that $\|f - \varphi\|_p < \varepsilon$.
The functions in L^p need not be continuous. But how bad can they be?

Functions in L^p can be approximated by continuous functions if $1 \leq p < \infty$.

Theorem

Let $1 \leq p < \infty$, E – a measurable set, f any function in $L^p(E)$ and ε any positive number. Then there exists a continuous function φ defined on E such that $\|f - \varphi\|_p < \varepsilon$.

Functions with jump discontinuities cannot be approximated in L^∞ by continuous functions.
The functions in L^p need not be continuous. But how bad can they be?

Functions in L^p can be approximated by continuous functions if $1 \leq p < \infty$.

Theorem

Let $1 \leq p < \infty$, E a measurable set, f any function in $L^p(E)$ and ε any positive number. Then there exists a continuous function φ defined on E such that $\|f - \varphi\|_p < \varepsilon$.

Functions with jump discontinuities cannot be approximated in L^∞ by continuous functions.
Definition

Let \((X, \| \cdot \|)\) be a normed linear space. Let \(A \subseteq B \subseteq X\). We say that \(A\) is dense in \(B\) if for every \(b \in B\) and for every \(\varepsilon > 0\) there exists an element \(a \in A\) such that \(\|a - b\| < \varepsilon\).
Definition
Let \((X, \| \cdot \|)\) be a normed linear space. Let \(A \subseteq B \subseteq X\). We say that \(A\) is dense in \(B\) if for every \(b \in B\) and for every \(\varepsilon > 0\) there exists an element \(a \in A\) such that \(\|a - b\| < \varepsilon\).

\(C(E) = \) the set of continuous functions defined on \(E\) is dense in \(L^p\) for \(1 \leq p < \infty\), but it is not dense in \(L^\infty(E)\).
Definition

Let \((X, \| \cdot \|)\) be a normed linear space. Let \(A \subseteq B \subseteq X\). We say that \(A\) is dense in \(B\) if for every \(b \in B\) and for every \(\varepsilon > 0\) there exists an element \(a \in A\) such that \(\| a - b \| < \varepsilon\).

\[C(E) = \text{the set of continuous functions defined on } E \text{ is dense in } L^p \text{ for } 1 \leq p < \infty, \text{ but it is not dense in } L^\infty(E). \]

Theorem

Let \(E\) be a measurable set, \(S(E)\) be the space of simple functions defined on \(E\), and \(1 \leq p \leq \infty\). Then \(S(E)\) is dense in \(L^p(E)\).
Separability of L^p for $1 \leq p < \infty$

A normed linear space X is called separable if there exists a countable subset A of X that is dense in X.

If $1 \leq p < \infty$ then L^p is separable. L^∞ is not separable.

The family of functions $F = \{ \phi_s = \chi_{[0,s]} \}$ $s \in \mathbb{R}$ is uncountable.

If $s \neq t$ then $||\phi_s - \phi_t||_\infty = 1$.

Therefore, no countable subset A of L^∞ can satisfy that for each element f of F there is an element $a \in A$ such that $||a - f||_\infty < 1/2$.
Definition

A normed linear space X is called *separable* if there exists a *countable* subset A of X that is dense in X.

If $1 \leq p < \infty$ then L^p is separable.

L^∞ is not separable.

The family of functions $F = \{ \phi_s = \chi_{[0,s]} \}_{s \in \mathbb{R}}$ is uncountable.

If $s \neq t$ then $||\phi_s - \phi_t||_\infty = 1$.

Therefore, no countable subset A of L^∞ can satisfy that for each element f of F there is an element $a \in A$ such that $||a - f||_\infty < 1/2$.

Nelson Castañeda
Central Connecticut State University
Definition

A normed linear space X is called separable if there exists a countable subset A of X that is dense in X.

- If $1 \leq p < \infty$ then L^p is separable.
Definition

A normed linear space X is called *separable* if there exists a *countable* subset A of X that is dense in X.

- If $1 \leq p < \infty$ then L^p is separable.
- L^∞ is not separable.
Definition

A normed linear space X is called *separable* if there exists a *countable* subset A of X that is dense in X.

- If $1 \leq p < \infty$ then L^p is separable.
- L^∞ is not separable.
- The family of functions $F = \{ \varphi_s = \chi_{[0,s]} \}_{s \in \mathbb{R}}$ is uncountable.
Definition
A normed linear space X is called *separable* if there exists a *countable* subset A of X that is dense in X.

- If $1 \leq p < \infty$ then L^p is separable.
- L^∞ is not separable.
- The family of functions $\mathcal{F} = \{\varphi_s = \chi_{[0,s]}\}_{s \in \mathbb{R}}$ is uncountable.
- If $s \neq t$ then $\|\varphi_s - \varphi_t\|_\infty = 1$.

Nelson Castañeda
Central Connecticut State University
Definition

A normed linear space X is called separable if there exists a countable subset A of X that is dense in X.

- If $1 \leq p < \infty$ then L^p is separable.
- L^∞ is not separable.
- The family of functions $F = \{ \varphi_s = \chi_{[0,s]} \}_{s \in \mathbb{R}}$ is uncountable.
- If $s \neq t$ then $||\varphi_s - \varphi_t||_\infty = 1$.
- Therefore, no countable subset A of L^∞ can satisfy that for each element f of F there is an element $a \in A$ such that $||a - f||_\infty < 1/2$.

Nelson Castañeda
Central Connecticut State University
Let V, W be two linear spaces. A mapping $T: V \to W$ is called linear if it sends linear combinations to linear combinations, i.e., if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in V$ and all scalars α, β.

Let X be two normed linear spaces and $T: X \to \mathbb{R}$ a linear mapping. T is called a linear bounded functional on X if there is a real number M such that $||T(x)|| \leq M||x||$ for all $x \in X$.

Here $||T(x)||$ is simply the absolute value of $T(x)$.
Let V, W be two linear spaces. A mapping $T : V \rightarrow W$ is called linear if it sends linear combinations to linear combinations, i.e., if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in V$ and all scalars α, β.

Let X be two normed linear spaces and $T : X \rightarrow \mathbb{R}$ a linear mapping. T is called a linear bounded functional on X if there is a real number M such that $||T(x)|| \leq M||x||$ for all $x \in X$.

Here $||T(x)||$ is simply the absolute value of $T(x)$.
Let V, W be two linear spaces. A mapping $T : V \rightarrow W$ is called \textit{linear} if it sends linear combinations to linear combinations, i.e., if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in V$ and all scalars α, β.

Let X be two normed linear space and $T : X \rightarrow \mathbb{R}$ a linear mapping. T is called a linear bounded functional on X if there is a real number M such that $\|T(x)\| \leq M\|x\|$ for all $x \in X$.

Here $\|T(x)\|$ is simply the absolute value of $T(x)$.
Let V, W be two linear spaces. A mapping $T : V \rightarrow W$ is called \textit{linear} if it sends linear combinations to linear combinations, i.e., if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in V$ and all scalars α, β.

Let X be a normed linear space and $T : X \rightarrow \mathbb{R}$ a linear mapping. T is called a \textit{linear bounded functional} on X if there is a real number M such that $\|T(x)\| \leq M\|x\|$ for all $x \in X$.

Here $\|T(x)\|$ is simply the absolute value of $T(x)$.
Definition

Let X be a normed linear space and T a linear bounded functional on X. The norm of T is the infimum of all numbers M such that $\|T(x)\| \leq M \|x\|$. The norm of T is denoted by $\|T\|$.

The set of all linear bounded functionals on a normed linear space X is a linear space.

Definition

Let X be a normed linear space. The space of all linear bounded functionals on X is called the dual space of X. It is denoted by X^*.

$(X^*, \|\cdot\|)$ is a normed linear space.
Definition
Let X be a normed linear space and T a linear bounded functional on X. The norm of T is the infimum of all numbers M such that $||T(x)|| \leq M||x||$.

The set of all linear bounded functionals on a normed linear space X is a linear space.

Definition
Let X be a normed linear space. The space of all linear bounded functionals on X is called the dual space of X. It is denoted by X^\ast.

$(X^\ast, ||\cdot||)$ is a normed linear space.
Definition
Let X be a normed linear space and T a linear bounded functional on X. The norm of T is the infimum of all numbers M such that $\|T(x)\| \leq M\|x\|$.

The norm of T is denoted by $\|T\|$.

The set of all linear bounded functionals on a normed linear space X is a linear space.

Definition
Let X be a normed linear space. The space of all linear bounded functionals on X is called the dual space of X. It is denoted by X^\ast.

$(X^\ast, \|\cdot\|)$ is a normed linear space.
Definition
Let X be a normed linear space and T a linear bounded functional on X. The norm of T is the infimum of all numbers M such that $\| T(x) \| \leq M \| x \|$.
- The norm of T is denoted by $\| T \|$.
- $\| T(x) \| \leq \| T \| \| x \|$ for all $x \in X$.
Definition
Let X be a normed linear space and T a linear bounded functional on X. The norm of T is the infimum of all numbers M such that $\| T(x) \| \leq M \| x \|$.
- The norm of T is denoted by $\| T \|$.
- $\| T(x) \| \leq \| T \| \| x \|$ for all $x \in X$.
- The set of all linear bounded functional on a normed linear space X is a linear space.

The space of all linear bounded functionals on X is called the dual space of X. It is denoted by X^*. $(X^*, \| \cdot \|)$ is a normed linear space.
Definition
Let X be a normed linear space and T a linear bounded functional on X. The norm of T is the infimum of all numbers M such that $\|T(x)\| \leq M \|x\|$.

- The norm of T is denoted by $\|T\|$.
- $\|T(x)\| \leq \|T\| \|x\|$ for all $x \in X$.

The set of all linear bounded functionals on a normed linear space X is a linear space.

Definition
Let X be a normed linear space. The space of all linear bounded functionals on X is called the dual space of X. It is denoted by X^*.
Definition
Let X be a normed linear space and T a linear bounded functional on X. The norm of T is the infimum of all numbers M such that $\|T(x)\| \leq M\|x\|$.
- The norm of T is denoted by $\|T\|$.
- $\|T(x)\| \leq \|T\||\|x\|$ for all $x \in X$.
- The set of all linear bounded functional on a normed linear space X is a linear space.

Definition
Let X be a normed linear space. The space of all linear bounded functionals on X is called the dual space of X. It is denoted by X^*.
- $(X^*, \| \cdot \|)$ is a normed linear space.
Theorem

Let $1 \leq p < \infty$ and $q = \frac{p}{p-1}$ its conjugate. For every function $g \in L^q$ the mapping $T: f \in L^p \rightarrow T(f) = \int g f \in \mathbb{R}$ is a bounded linear functional on L^p.

Theorem (Riesz Representation Theorem) Let $1 \leq p < \infty$ and $q = \frac{p}{p-1}$ its conjugate. Let T be a bounded linear functional on L^p. Then there exists a function $g \in L^q$ such that $T(f) = \int g f$ for every function $f \in L^p$.

For T, g in this theorem, $\|T\| = \|g\|_q$.

So for $1 \leq p < \infty$, the dual space of L^p is (isometric to) L^q.

Nelson Castañeda
Central Connecticut State University
Theorem

Let $1 \leq p < \infty$ and $q = \frac{p}{p-1}$ its conjugate. For every function $g \in L^q$ the mapping $T : f \in L^p \longrightarrow T(f) = \int g f \in \mathbb{R}$ is a bounded linear functional on L^p.

So for $1 \leq p < \infty$, the dual space of L^p is (isometric to) L^q.

Nelson Castañeda
Central Connecticut State University
Theorem
Let $1 \leq p < \infty$ and $q = \frac{p}{p-1}$ its conjugate. For every function $g \in L^q$ the mapping $T : f \in L^p \rightarrow T(f) = \int g \ f \in \mathbb{R}$ is a bounded linear functional on L^p.

Theorem
(Riesz Representation Theorem) Let $1 \leq p < \infty$ and $q = \frac{p}{p-1}$ its conjugate. Let T be a bounded linear functional on L^p. Then there exists a function $g \in L^q$ such that $T(f) = \int g \ f$ for every function $f \in L^p$.
Theorem

Let $1 \leq p < \infty$ and $q = \frac{p}{p-1}$ its conjugate. For every function $g \in L^q$ the mapping $T : f \in L^p \rightarrow T(f) = \int g f \in \mathbb{R}$ is a bounded linear functional on L^p.

Theorem

(Riesz Representation Theorem) Let $1 \leq p < \infty$ and $q = \frac{p}{p-1}$ its conjugate. Let T be a bounded linear functional on L^p. Then there exists a function $g \in L^q$ such that $T(f) = \int g f$ for every function $f \in L^p$.

For T, g in this theorem, $||T|| = ||g||_q$.
Theorem

Let $1 \leq p < \infty$ and $q = \frac{p}{p-1}$ its conjugate. For every function $g \in L^q$ the mapping $T : f \in L^p \rightarrow T(f) = \int g f \in \mathbb{R}$ is a bounded linear functional on L^p.

Theorem

(Riesz Representation Theorem) Let $1 \leq p < \infty$ and $q = \frac{p}{p-1}$ its conjugate. Let T be a bounded linear functional on L^p. Then there exists a function $g \in L^q$ such that $T(f) = \int g f$ for every function $f \in L^p$.

- For T, g in this theorem, $\|T\| = \|g\|_q$.
- So for $1 \leq p < \infty$, the dual space of L^p is (isometric to) L^q.