Section 6.2

1.

\[x \quad 5 \]

\[3 \]

\[3x \quad 15 \]

3.

\[5x \quad -3 \]

\[8x \]

\[8x(5x - 3) = 8x(5x + -3) \]

\[= (8x + 5x) + (8x + -3) \]

\[= 40x^2 + -24z \]

\[= 40x^2 - 24z \]

5.

\[-x^3 \quad 9x \quad -5 \]

\[-1 \]

\[(-x^2 + 9x - 5) = 1(-x^2 + 9x + -5) \]

\[= -1(-x^2 + 9x + -5) \]

\[= x^2 + 9x + 5 \]

\[= x^2 - 9x + 5 \]

7. a.

\[5x \quad -3 \]

\[2 \]

\[10x - 6 = 2(5x - 3) \]

\[10x - 6 = 10x + -6 \]

\[= 2(5x + -3) \]

\[= 2(5x - 3) \]

b. Factoring 54 and 72 with a factor tree, we have

\[54 \]

\[2 \quad 27 \]

\[3 \quad 9 \]

\[3 \quad 3 \]

\[72 \]

\[2 \quad 36 \]

\[2 \quad 18 \]

\[3 \quad 3 \]

54 = 2*3*3*3 = 2*3^3

72 = 2*2*3*3*3 = 2^2*3^3

The powers of 2 are 2^1 and 2^2. The smallest power is 2^1.

The powers of 3 are 3^3 and 3^2. The smallest power is 3^2.

Taking the smallest powers gives a GCF of 2^1*3^2 = 18

\[\begin{array}{ccc} 54 & 72 \\ 18 & 4 \end{array} \]

\[54y + 72 = 18(3y + 4) \]

\[54y + 72 = 18(3y + 4) \]

c. The GCF of 14, 7, and 42 is 7.

Only the variable \(x \) appears in all three terms of the polynomial.

The powers of \(x \) are \(x^1, x^1, x^2 \). The smallest power is \(x \).

This gives a GCF of \(7x^1 = 7x \). Factoring, we have

\[14x^1 + 7xy - 42x^2 = 7x(2x^1 + y - 6x) \]

\[7x \quad 14x \]

\[7xy \quad -42x^2 \]

d. \(7x(2x^2 + y - 6x) = 14x^3 + 7xy - 42x^2 \) the factorization checks

9. a. The GCF of 18 and 6 is 6.

The powers of \(x \) are \(x^2 \) and \(x^3 \). The smallest power is \(x^2 \).

The GCF is \(6x^2 \). Factoring the GCF from both terms gives

\[18x^2 + 6x^3 = 6x^2(3x^2 + 1) \]

b. The only common factor of 21 and 15 is 3.

The powers of \(x \) are \(x^1 \) and \(x^2 \). The smallest power is \(x^1 \).

The powers of \(y \) are \(y^1 \) and \(y^4 \). The smallest power is \(y^1 \).

The GCF is \(3xy \). Factoring the GCF from both terms gives

\[21x^1y^3 - 15xy^4 = 3xy^3(7x - 5y) \]

11. surface area \(= 2\pi r h + 2\pi r^2 = 2\pi r(h + r) \)

© Houghton Mifflin Company. All rights reserved.
13. a. The terms of an expression are separated by addition or subtraction and we do not count extra terms inside grouping symbols. This gives two terms \((x + 3)(4y + 9)\) and \((x + 3)(x + 9)\). Common to both terms is the binomial \((x + 3)\).

b. \((x + 3)(4y + 9)\)

15. a. \(x^2 + 4x = 0\)
\(x(x + 4) = 0\)
\(x = 0\) or \(x = -4\)

b. \(x^2 - 11 = 0\)
\(x(x - 11) = 0\)
\(x = 0\) or \(x = 11\)

Skills and Review 6.2

17. \(\frac{6xy^4}{2x^2y^4} = \left(\frac{3x^{-1}y^{-4}}{x^{-2}y^4}\right)^2\)
\(= \left(3x^{1-4}y^{4-4}\right)^2\)
\(= \left(3x^{-3}y^0\right)^2\)
\(= \left(3x^{-3}\right)^2\)
\(= 3^2 \cdot x^{-6}\)
\(= \left(\frac{1}{3^2}\right)^{-6}\)
\(= x^6\)

19.

<table>
<thead>
<tr>
<th>Alcohol</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>25%</td>
</tr>
</tbody>
</table>

\(0.25\times2\) \(L\) \(= 0.5\) \(L\); there is \(0.5\) \(L\) of alcohol in the solution.

21.

3 in | Original | 3 \(\times\) | Enlargement | 5 in

\(\frac{\text{width of enlargement}}{\text{length of enlargement}} = \frac{\text{width of original picture}}{\text{length of original picture}}\)

This is one of several correct proportions. For help, see setting up proportions on page 180 of the text.

Let \(w = \) the width of the enlargement in inches, then \(w + 6 = \) length of the enlargement.
\(\frac{w}{3} = \frac{5}{5}\)
\(5w = 3(w + 6)\)
\(5w = 3w + 18\)
\(2w = 18\)
\(w = 9\)

The width of the enlargement is 9 inches and the length is 9 + 6 or 15 inches.

23. a. Solving the equation for \(y\) in terms of \(x\) puts the equation in slope-intercept form and this gives the slope and \(y\)-intercept.
\(5x + 6y = 70\)

\(6y = -5x + 70\)
\(\Rightarrow y = \frac{-5}{6}x + \frac{70}{6}\)

When an equation is in slope-intercept form the slope is the coefficient of \(x\). The slope = \(\frac{-5}{6}\).

b. To find the \(x\)-intercept substitute 0 for \(y\) and solve for \(x\).
\(5x + 6(0) = 70\)
\(5x + 0 = 70\)
\(5x = 70\)
\(x = 14\)

The \(x\)-intercept = (14, 0).

The constant is \(\frac{35}{3}\) so the \(y\)-intercept = \(\left(0, \frac{35}{3}\right) = \left(0, 11\frac{2}{3}\right)\).
25. distance = \(\sqrt{\text{run}^2 + \text{rise}^2} \) or
\[\text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
Let \((x_1, y_1) = (6, 3)\) and \((x_2, y_2) = (6, 8)\)
\[d = \sqrt{(6 - 6)^2 + (8 - 3)^2} \]
\[= \sqrt{12^2 + 5^2} \]
\[= \sqrt{144 + 25} \]
\[= \sqrt{169} \]
\[= 13 \]
The distance between the two points is 13.