Chapter 8: Functions

Section 8.1

1. a.

!Diagram

b. A function requires that each input be associated with one and only one output. This is not a function; the input is associated with two outputs, win and lose.

3. a. Function; domain: {Lab, Husky, Poodle}; range: {dog}
 b. Not a function; the input H2O has associated with it, more than one output.

5. a. 0 seconds and 2.5 seconds
 b. Domain: \(\{ x \mid 0 \leq x \leq 2.5 \} \)
 c. 0 feet and 100 feet
 d. Range: \(\{ x \mid 0 \leq y \leq 100 \} \)
 e. In a real-life problem, the limits of the domain are used to set Xmin and Xmax and the limits of the range are used to set Ymin and Ymax.
 f. Quadrant I; the domain and range are both nonnegative.

7. \(f(0) = 0 \)
 \(f(2) = 12 \)
 \(f(3) = 27 \)

9. a. \(f(x) = x - 5 \)
 \(f(2) = 2 - 5 \)
 = -3
 b. \(g(x) = x^2 - 3x \)
 \(g(-4) = (-4)^2 - 3(-4) \)
 = 28
 c. \(h(t) = -4.9t^2 + 10t + 5 \)
 \(h(3) = -4.9(3)^2 + 10(3) + 5 \)
 = -9.1

11. In the Y= menu, enter \(Y1 = 4X^2 + 5X + 2 \). On the home screen type \(Y1(2.15) \) and press ENTER, see p 305 of the text.

\(f(2.15) = 16.641 \)

13. a. The parabola continues to spread left to \(-\infty \) and right to \(\infty \); domain: \(\{ x \mid -\infty < x < \infty \} \).
The parabola has a maximum y-value of 2 and continues downward to \(-\infty \); range: \(\{ y \mid y \leq 2 \} \).
 b. The graph continues to spread left and right; domain \(\{ x \mid -\infty < x < \infty \} \).
The graph has a minimum y-value of 2 and continues upward to \(\infty \); range: \(\{ y \mid y \geq 2 \} \).
 c. The line continues left and right; domain: \(\{ x \mid -\infty < x < \infty \} \).
The only y-value is 5; range: \(\{ y \mid y = 5 \} \).

15. a. Range: \(\{ y \mid y \geq 0 \} \).
The outputs will be nonnegative so the graph will only appear in Quadrants I and II.
 b. The absolute value of any real number results in an output greater than or equal to zero.

Skills and Review 8.1

17. The x-coordinate of the vertex gives the width that maximizes area. We found this in Exercise 16;
 \(w = 45 \). The width is 45 feet and the length is
 \(180 - 2w = 90 \) feet.

19. a. \(0 = x^2 + 8x + 16 \)
 Windows may vary: Xmin = -9.4, Xmax = 9.4, Ymin = -3.1, Ymax = 3.1

b. \(0 = x^2 + 8x + 16 \)
 \(0 = x^2 + 4x + 4x + 16 \)
 \(0 = (x + 4)(x + 4) \)
 \(x + 4 = 0 \)
 \(x = -4 \)

c. \(a = 1, b = 8, c = 16 \)
 \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
 \(= \frac{-8 \pm \sqrt{64 - 4*1*16}}{2*1} \)
 \(= \frac{-8 \pm \sqrt{0}}{2} \)
 \(= -4 \pm \frac{0}{2} \)
 \(x = -4 \)
21. \(\frac{1}{5} x^2 = 7 \)
 \[x^2 = 35 \]
 \[x = \pm \sqrt{35} \]
 \[x = 5.92 \]

23. a. \(\frac{1}{x^2} = x^2 \)

 b. \(x^{-2} = \frac{1}{x^2} \)

25. \(y = kx \)
 \[-6 = k(-4) \]
 \[\frac{3}{2} = k \)